§02. Laplace-Wahrscheinlichkeit

1. Wahrscheinlichkeitsmaß und -verteilung (axiomatisch)

Definition:

Eine Funktion P: $A \mapsto P(A)$ mit $A \in \wp(\Omega)$ und $P(A) \in \mathbb{R}$ heißt *Wahrscheinlichkeitsmaß*, wenn sie folgende Eigenschaften (Axiome von Kolmogorow) erfüllt:

- 1. Für ein beliebiges Ereignis gilt: $P(A) \ge 0$ (Nichtnegativität)
- 2. Für das sichere Ereignis gilt: $P(\Omega) = 1$ (Normiertheit)
- 3. Für zwei unvereinbare Ereignisse A und B gilt: $P(A \cup B) = P(A) + P(B)$

Man nennt diese Zahl P(A) "Wahrscheinlichkeit des Ereignisses A".

Definition:

Sei $\{A_1, A_2; ... A_m\}$ eine Zerlegung von Ω (d.h. $\Omega = A_1 \cup A_2 \cup ... \cup A_m$ mit unvereinbaren Ereignissen $A_1, A_2; ... A_m$).

Die Funktion P: $A \mapsto P(A_i)$ mit i = 1; 2; ...; m heißt Wahrscheinlichkeitsverteilung der Zerlegung.

Beispiele: Werfen eines Laplace-Würfels (idealer W.)

ω	1	2	3	4	5	6
$P(\{\omega\})$	1/6	1/6	1/6	1/6	1/6	1/6

Werfen einer L-Münze:

ω	K	Z
$P(\{\omega\})$	1/2	1/2

Glücksrad

ω	G (grün)	B (blau)	R (Rot)
$P(\{\omega\})$	1/2	1/4	1/4

2. Klassischer Wahrscheinlichkeitsbegriff

Definition:

Ein stochastisches Experiment heißt *Laplace-Experiment*, wenn alle Elementarereignisse die gleiche Wahrscheinlichkeit besitzen.

Für Laplace-Experimente gilt:

$$P(A) = \frac{|A|}{|\Omega|}$$

$$P(A) = \frac{\text{Anzahl der für A günstigen Ergebnisse}}{\text{Anzahl der möglichen gleichwahrscheinlichen Ergebnisse}}$$

Eigenschaften für Wahrscheinlichkeiten:

①
$$0 \le P(A) \le 1$$

② a)
$$P(A) = \sum P(\{\omega\}) (\omega \in A)$$

Damit folgt für unvereinbare Ereignisse A₁, A₂,...,A_n:

②.b)
$$P(A_1 \cup A_2 \cup ... \cup A_n) = P(A_1) + P(A_2) + ... P(A_n) \ (\omega \in A)$$

$$\Im P(\emptyset) = 0$$
 $\Re P(\Omega) = 1$ $\Im P(A) = 1 - P(\overline{A})$

© H. Drothler 2012 www.drothler.net

3. Vierfeldertafel

Die Eigenschaften kommen bei der Vierfeldertafel zur Anwendung:

	A	$\frac{1}{\overline{A}}$	
В	$P(A \cap B)$	$P(\overline{A} \cap B)$	P(B)
B	$P(A \cap \overline{B})$	$P(\overline{A} \cap \overline{B})$	$P(\overline{B})$
	P(A)	$P(\overline{A})$	1

Beispiel

Im Kurs M ₁ sind 22 Schüler.
A: "blonde Schüler": P(A) =
B: "Schüler, die ein Musikinstrument spielen" P(B) =
Außerdem ist gegeben: $P(A \cap B) = \underline{\hspace{1cm}}$
Berechne mit einer Vierfeldertafel die restlichen relativen Häufigkeiten.

	A	\overline{A}	
В			
B			

© H. Drothler 2012 www.drothler.net